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Abstract

Nonlinear integrable optics is a recently proposed accelerator lattice design approach which allows
to generate an amplitude dependent tune shift which is needed in high brightness accelerators
to mitigate fast coherent instabilities. Whereas usually octupoles are used to achieve this task,
this concept allows doing so without exciting any resonances, in turn preventing any particle loss.
The concept is based around a special magnet design, together with specific constraints on the
optics of the accelerator. To study such a system, the Integrable Optics Test Accelerator (IOTA)
was recently constructed and commissioned at Fermilab. For the assessment of the performance
of this concept, good knowledge of the optics and the (non-)linear dynamics without the special
magnet is of key importance. As such, measurements were conducted in the IOTA ring, using the
captured turn-by-turn data by the beam position monitors after excitation to infer quantities such
as amplitude detuning and resonance driving terms. In this note, first results of these measurements
are presented.
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1 Introduction

In order to push the performance of current and potential future accelerator projects, the
assessment of nonlinear beam dynamics has become a mainstay in the design and com-
missioning in these machines. In synchrotrons, nonlinear magnetic elements may have a
detrimental impact on the machine performance due to for example excitation of strong
resonances and reduction of dynamic aperture. As such, care is taken already in the design
phase of many machines to evaluate the impact of higher order multipoles to define feasible
correction strategies [1]. Once a machine is set up and running, it is equally important to
check the validity of the prior models through dedicated measurements to ensure thorough
understanding of involved dynamics in the accelerator and as solid starting point for machine
tuning. A variety of measurement techniques are available to identify specific error sources,
which can be conducted either via beam-based methods such as assessing feed-down effects
via closed orbit modifications [2, 3] or based on turn-by-turn data [4], which was the method
of choice for the studies presented in this note.

By performing spectral analysis on the turn-by-turn motion of a transversally excited
particle bunch, not only the main spectral lines (corresponding to the tunes) may be observed
but also higher order lines. These spectral lines, associated with specific resonances, allow
to determine the distortion of the phase-space compared to the ideal linear case due to those
resonances via the resonance driving term (RDT) formalism. The evolution of amplitude of
specific RDTs around the accelerator ring also allows to determine location and strength of
nonlinear magnets [5].

The study of the nonlinear dynamics and assessment of nonlinear magnetic fields is of
particular interest in accelerators based on the concept of nonlinear integrable optics [6].
Here, by using a magnet with a particular magnetic field shape, particles experience specific
nonlinear effects such as amplitude detuning while in the ideal case no resonances are excited,
in turn preventing any particle loss. The feasibility of this concept is currently being tested
at the Integrable Optics Test Accelerator (IOTA) at Fermilab [7].

The presented concept to allow for nonlinear integrable optics imposes strict constraints
on the accelerator characteristics, such as equal tunes in both planes Qx = Qy, layout,
and in particular also on dynamics outside of the section where the NL-magnet is located.
Specifically, a linear transfer map is assumed between the ends of this straight section in
the original derivations, which due to the presence of chromaticity sextupoles or potential
field errors is not the case in the IOTA accelerator. Given these specific constraints on the
optics and the general goal of the demonstration of nonlinear integrable optics, an assessment
of sources of nonlinear magnetic fields is thus important for this feasibility study, further
potentially allowing for a clear attribution of the sources of particle loss.

The aim of this note is to present a first look into the nonlinear dynamics of the IOTA
accelerator, generated by elements other than the dedicated nonlinear channels. In Sec. 2,
a brief introduction to the concept of nonlinear integrable optics is presented, aiming to
motivate why the knowledge and control of nonlinear magnets is critical here. An overview
over the IOTA accelerator is then presented in the following Sec 3. Here, focus will be put
on hardware and operational aspects relevant for the conducted experiments and results,
which will be presented in Sec 4.
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2 Nonlinear integrable optics

In modern synchrotrons, the use of nonlinear magnets has become a necessity in order to
achieve the ever increasing performance goals while itself also possibly posing a limiting
factor. One such example would be the necessity to use octupole magnets in the LHC to
suppress collective instabilities via Landau damping due to an amplitude-dependant tune-
spread while these also excite resonances which may lead to particle loss. As such, a trade-off
has to be found between the stabilizing effect of the generated amplitude detuning and the
excitation of resonances with an associated negative impact on the dynamic aperture (DA),
which is the maximum amplitude up to which bounded motion of the particles for a given
time span occurs.

To overcome the problem of the particle loss associated with nonlinear magnetic fields
and associated resonances, in [6] a novel approach is discussed to find a nonlinear system
with integrable motion which is feasible to be implemented in a particle accelerator. A fully
integrable system is characterized by regular bounded motion of particles independent of
their initial conditions or, conversely, a system with same number of conserved quantities as
degrees of freedom, which for a 4D system requires two invariants. An accelerator can be
described by a Hamiltonian as

H =
p2x
2

+
p2y
2

+K(s)
(x2

2
+
y2

2

)
+ V (x, y, s) , (1)

where K(s) represents the linear focusing component and V (x, y, s) an s−dependent non-
linear potential. In order to find a system with two invariants of motion which can be can
be achieved with magnets, the system is moved from an s-dependent system to a system
dependent on the phase ψ, which is then expressed in normalized coordinates

zN =
z√
βz(s)

, pN = p
√
βz(s)−

β′z(s)

2
√
βz(s)

, z ∈ {x, y} . (2)

The Hamiltonian then takes the following form

HN =
p2xN

+ p2yN
2

+
x2N + y2N

2
+ U(xN , yN) , (3)

with the specific potential

U(xN , yN) = β(ψ)V
(
xN
√
β(ψ), yN

√
β(ψ), s(ψ)

)
(4)

to be found which may yield a second invariant next to the time-independent Hamilton from
Eq. (3) itself. In [6], families of solution for different coordinate system are presented, most
notably for elliptic coordinates

ξ =

√
(x+ c)2 + y2 +

√
(x− c)2 + y2

2c
, (5)

η =

√
(x+ c)2 + y2 −

√
(x− c)2 + y2

2c
, (6)
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where a potential of the form

U(xn, yn) =
f(ξ) + g(η)

ξ2 − η2
(7)

with f and g defined as

f(ξ) = ξ
√
ξ2 − 1

[
d+ t cosh−1(ξ)

]
, (8)

g(η) = η
√

1− η2
[
b+ t cos−1(η)

]
, (9)

which allow for the realization using magnetic fields given that this potential also satisfies the
Laplace Equation. The form of the Hamilton of Eq. (1) with the axial symmetric focusing
imposes some constraint on the lattice design. One potential solution is displayed in Fig. 1,
where the lattice is split into two parts, a drift-space of length L with equal β-functions in
both planes and where the special nonlinear potential is installed and a so called T-insert,
being a linear transfer-map.

Figure 1: Schematic illustration of a lattice required to provide nonlinear integrable motion
as described in [6].

In turn, also the choice of the working point of the accelerator is limited to Qx = Qy.
Implementing such a system in an accelerator would allow for the generation of a tune spread
whilst not exciting any resonances, in turn avoiding any particle loss and thus overcoming
potential performance limitations due to coherent instabilities.

However, effects such as chromaticity may lead to a violation of the imposed constraints,
in turn restricting any beneficial effects to particles within a limited momentum deviation
range. In [8], it was shown that a chromaticity correction using sextupoles can restore in-
tegrability for off-momentum particles. This however violates the aforementioned constraint
of the linear transfer-map outside of the nonlinear channel and in turn resonances will be
excited. Similarly so, nonlinear magnetic field imperfections may add to this.

Furthermore, as presented in [9], it can be shown that the first term of the multipole
expansion of the potential in Eq. (7) for a given set of parameters b and d represents a
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quadrupole. As such, the powering of the NL-magnet will entail a change of the tunes, as
illustrated in Fig. 2. As such, the choice of the working point, or conversely the strength t
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Figure 2: Change of the horizontal/vertical tune during different strengths t of the NL-
magnet and resonances up to fifth order. Marked in red are normal sextupole resonances.
The working point of the bare lattice with the NL-magnet depowered was assumed to be
Qx,y = 5.30.

of the NL-magnet, may be limited due to the two sextupole resonances in the vicinity of the
tune curve. Similarly so, even for working points sufficiently far away from those resonances,
due to the significant amplitude detuning created by the NL-magnet, these resonances might
be approached by particles and may lead to a subsequent particle loss. Depending on the
number of allowed particle losses, the impact of these resonances could thus be a limiting
factor for the created tune spread.

Due to the aforementioned arguments, the identification of nonlinear elements in an
accelerator lattice built around the concept of nonlinear integrable optics, characterisation
of critical resonances and possible optimization of any powering or correction scheme to
reduce the resonance strength may thus assist in restoring near-integrability of the nonlinear
motion and reducing particle loss.

5



3 The IOTA accelerator

One of the first accelerators built around the concept of nonlinear integrable optics is the
Integrable Optics Test Accelerator (IOTA) at Fermilab. Housed at Fermilab Accelerator
Science and Technology (FAST) facility, the storage ring with a circumference of 40 m,
together with the already established superconducting FAST linac and the proton injector
currently in development, allows not only for studies on nonlinear integrable optics but also,
amongst others, demonstration of optical stochastic cooling and experiments with electron
lenses. A comprehensive overview over the facility can be found in [7]. In the following,
only a brief overview of the characteristics of the IOTA storage ring, relevant to the studies
presented in the next section, is presented. In Fig. 3, the layout of the accelerator is presented.

Figure 3: Layout of the IOTA ring.

It consists of 8 straight sections, separated by dipoles with a bending angle of either
30◦ or 60◦. The straight sections on the top left and top right house the so called octupole
string, consisting of 17 individually powered octupoles, and the special nonlinear magnet,
implementing a potential as described in Eq. (7), respectively. The beam is injected in the
center straight on the top, which is also where the horizontal and vertical kicker [10] are
located, used to bring the injected beam on the closed orbit or excite the particle bunch
transversally. During Run II, in total 4 sextupoles were used to correct chromaticity in
the ring, 2 in each of the short straight sections, located in between the 60◦ dipoles. The
sextupoles in the same straight section are separated by a phase advance of 0.06 · 2π [rad]
in the horizontal and 0.25 · 2π [rad] in the vertical plane, while the phase advance between
the sextupoles further away from the injection straight is 0.99 · 2π [rad] and 0.36 · 2π [rad]
for the horizontal and the vertical plane, respectively. For acquiring turn-by-turn data after
a beam excitation, 21 beam position monitors are installed in the IOTA ring, with at least
two BPMs per straight section.

In Fig. 4, the baseline optics for the nonlinear integrable optics studies in the IOTA ring
is presented, with a working point of Qx,y = 5.3.

The sections marked in light grey and light green illustrate the location of the NL-magnet
and the octupole string, respectively, with both fulfilling the constraint illustrated in Fig. 1,
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Figure 4: Baseline optics for the nonlinear integrable optics studies, starting from the
injection point.

of equal β-functions in both planes. The phase-advance over each insertion is matched to
µx,y = 0.3. The phase advance between the right hand side of the grey marked section to
the left hand side of the same section is matched to an integer phase-advance. The same
holds true for the section containing the octupole string, marked in green.

4 Experimental setup and measurements

Various methods exist for the assessment and localisation of nonlinear magnetic fields in
an accelerator. For the studies presented in this note, a beam-based approach is chosen,
in particular looking into the turn-by-turn motion of a transversally excited particle bunch.
The spectral content of transverse beam position evolution after the excitation, recorded
around the ring by the 21 Beam Position Monitors (BPM), provides insights into the linear
optics and the characterisation of the nonlinear motion via (combined-) resonance driving
terms (RDT) [11]. By combining the data from different locations around the ring, the
location of strong sources may be inferred.

The turn-by-turn measurements were conducted during 3 non-consecutive shifts, where
both the NL-magnet and the octupole channel were turned off to allow for bare lattice
measurements. Where not specifically mentioned otherwise, the sextupoles were split in two
families, pairing both the sextupoles closer to the injection point and those further away,
and chromaticity was corrected to Q′x = Q′y = 0. Notably, the natural chromaticity of the
accelerator does not match the model values, the working assumption being an additional
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sextupole component from the 60◦ dipoles. Both measures aim to reduce decoherence to
allow for a sufficient number of turns. In Fig. 5, a typical example of turn-by-turn motion
recorded by one BPM is illustrated. Here, the number of usable turns before the signal is
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Figure 5: Turn-by-turn motion after one excitation recorded by the IBPMB2L.

damped down is about 900 turns. As the synchrotron radiation damping time is relatively
long (> 107 turns) [7], the damping mainly stems from the decoherence, and here in particular
from decoherence due to amplitude detuning, as chromaticity is matched to 0 [12].

Data was taken using either the baseline optics with a working point of Qx = Qy = 5.3
or with working points with larger tune separation, namely using Qx = 5.28/Qy = 5.31 and
Qx = 5.32/Qy = 5.29. The tunes were changed using the knobs as presented in Tab. 1.

Magnet ∆K/∆Qx ∆K/∆Qy

[10−3/m2] [10−3/m2]
QA1R −2.56 7.62
QA2R 16.84 −2.54
QA3R 4.36 11.61
QA4R −23.34 −3.40
QB1R −0.17 −32.40
QB2R 11.83 8.80
QB3R −0.64 −1.30
QB4R −2.87 −6.11
QB5R 4.25 9.01
QB6R −6.11 −12.95

Table 1: Knobs used to change horizontal and vertical tune. Note that due to symmetric
optics, the same change is applied in the quadrupoles on the left hand side.

The working point change is achieved by mostly adjusting the β-function in the injection
straight, as is displayed in Fig. 6, with the maximum change of the β-function below 10%.
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Figure 6: Change of the optics when moving from the nominal optics to a working point of
Qx = 5.28, Qy = 5.31.

Working points other than the nominal one were chosen for measurements of (C-)RDTs
as to distinguish between certain lines more easily. An example is displayed in Fig. 7.

Here, for the case of the nominal working point, for example, the sextupole lines H(−2, 0)
and H(0,−2) overlap and the octupole line H(−1, 2) lies in the shadow of the main tune
line, making the reconstruction rather difficult or next to impossible, which is not the case
for the separated working point. However, the change in working point also entails a change
of the amplitude of the (C-)RDTs and subsequently the amplitude of the spectral lines is
changed between these two cases. Thus, the derived resonance strength is not representative
for the case of the nominal optics. Still, the measurements allow to benchmark the nonlinear
model and infer location and strength of nonlinear magnetic fields.

The presented measurements were analysed using the python 3.7 based OMC3 software
suite [13], and crosschecked with its predecessor [14], implemented in python 2.7. The turn-
by-turn data was cleaned before spectral composition, using a variety of cut-based methods,
e.g. removing BPMs where the oscillation exceeds a given threshold, and removing noise
by performing a singular value decomposition, retaining only a number of modes with the
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(a) Working point Qx = Qy = 5.30

(b) Working point Qx = 5.28, Qy = 5.31

Figure 7: Comparison between spectra for the nominal working point (Qx = Qy = 5.30) and
a working point with a larger tune separation.

largest singular values [15]. The number of modes was chosen based on the analysis, with
the (C-)RDT analysis using a significantly higher number compared to the linear optics one
to be able to show local phenomena [16].
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4.1 Linear Optics

As demonstrated in [17], good control of the linear optics is among the key issues, critical
to achieving a large tune spread while keeping particle losses minimal. Similarly so, good
knowledge of the linear optics is also critical as a precursor to evaluating nonlinear observ-
ables. For the commissioning of the linear optics, a LOCO algorithm is regularly used [18],
with good results achieved in the previous run [19]. Complementary to the LOCO based
approach, as a first step before analysing higher order modes in the spectral components of
the motion, the linear optics is inferred from the captured turn-by-turn data. Two methods
were used to infer the linear optics, one based on the measured phase advance between BPMs
and one based on the amplitude of the oscillation.

For the phase advanced based approach, the N-BPM method [20, 21] is employed, using
combinations of 7 surrounding BPMs to the one probed. This approach uses measured and
model phase advances between BPMs together with the model β-functions at the BPMs to
determine the β-function at a certain BPM. In Fig. 8, the difference between model and
measured phases between consecutive BPMs is presented.
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Figure 8: Difference between measured and model phase advance. The phase difference at
given BPM represents the difference with respect to the next BPM.

The phase advance in the nonlinear channel on the left hand side of the plot is well
controlled, approaching the desired 10−3 level. In the octupole channel on the right side of
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the plot on the other hand, a larger phase difference is noted. It has to be noted that this
measurements were conducted with a non-nominal optics at a working point of Qx = 5.28,
Qy = 5.31 and without any prior corrections applied, as such not being able to accurately
reflect the levels reached in operation.

Using the the measured phase difference as input and the aforementioned N-BPM al-
gorithm, the β-functions were determined and are displayed in Fig. 9.
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Figure 9: Measured β-beating using the analytical N-BPM method.

Although no optics correction were performed after the application of the tune knob,
the presented results show a peak β-beating below 12 % around the IOTA ring, above the
target accuracy for the experiments with the NL-magnet, but well with the parameters for
experiments with the octupole channel [19]. Notably, the results in the horizontal plane are
worse, likely due to reduced number of usable turns in this plane and thus reduced phase
accuracy.

The other approach for determining the optics functions around the ring, using the oscil-
lation amplitude of the betatron motion, dubbed β from amplitude [22], critically depends on
the calibration of the individual BPMs and on the accuracy of the kick action determination.
The kick action is determined using

2Jx,y =

∑
BPMs(0.5Ax,y)

2/C2
x,yβx,y

NBPMs

, (10)

where Ax,y is the peak-to-peak amplitude of the oscillation at the given BPM, βx,y the beta-
function from the model at the respective BPM, NBPMs the number of the BPMs, and
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Cx,y represents the, a priori unknown, calibration factor of the given BPM. The underlying
assumptions for the use of this formula are that the effect of linear coupling on the action,
as well as that the phase space distortion from higher order resonances are negligible, and
that by averaging over all BPMs, first order effects from optics errors are canceled and the
remaining higher order having no significant impact. The β-function at a given BPM is then
inferred via

βx,y =
A2

x,y

C2
x,y2Jx,y

. (11)

The calibration factor may be inferred later by comparing to trusted optics measurements
from LOCO. However, given the exploratory nature of the presented measurements, the
determination of the calibration factors and validation was deemed outside of the scope of
this work. In Fig. 10, the results using the β from amplitude method are displayed.
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Figure 10: Measured β-beating using the β from amplitude method.

For the presented measurements, the BPM IMBPMA1C has been excluded, as across all
measurements it has shown a significantly lower β-function, which is attributed to this BPM
featuring an alternate design with a wider aperture [7] and its position readout not adapted to
the different geometry compared to the other BPMs. Compared to the previously presented β
from phase result, the β from amplitude measurements show a higher β-beating, with a peak
deviation of about 15 % compared to the 12 % found before. As mentioned before, this could
partly be attributed to the calibration issues in BPMs. Additionally, the action calculation
may be improved by using measured β-function from LOCO measurements. However, in
both measurements a significant beating is found close to the octupole string and in the

13



injection straight, where also the optics was changed to achieve the change in tunes. Similar
results have also been obtained for data sets from later measurements shift using the same
working point.

Notably, in both analyses, multiple data sets show erratic behaviour, not present in
the kick immediately before and after this data set. No immediate explanation for these
transients has been been found and data sets with large deviations in the optics have been
dropped.

While not definite results and with potential for further improvements, studies and cross-
checks with LOCO, the results indicate that, as expected, the linear optics is sufficiently well
controlled for the following studies and no special precaution were deemed necessary for the
following analysis. However, the target β-beating below 1% is not yet observed using turn-
by-turn based methods for measuring the linear optics.

4.2 Amplitude detuning

The nonlinear integrable optics concept is based on generating a tune spread via detuning
with amplitude, which allows mitigation of coherent instabilities. As such, to determine the
amplitude detuning from the nonlinear inserts, it is also of particular interest to determine
the detuning of the bare accelerator with both nonlinear inserts turned off. Given that
detuning from the nonlinear inserts and from other sources of the accelerator is to first order
independent, the impact of the lattice sources could then be used together with the measured
detuning with the nonlinear inserts to allow for comparison with theoretical estimates. In
Tab. 2, the expected amplitude detuning from the model is shown for the case where the
sextupoles are used in their nominal configuration and for the case of a sextupole component
in all 60◦ dipoles of k3L = 4.55 m−2, compared to k3L = −40 m−2 and k3L = 55 m−2 of the
chromaticity sextupole when powered in their nominal correction scheme. The sextupole
component in the dipoles has been implemented such that it matches with the measured
chromaticity in the IOTA ring when the chromaticity sextupoles are turned off.

Sources chromaticity
sextupoles

chromaticity sextupoles +
dipole b3 errors

NL-magnet
with t=0.29

dQx/d2Jx 150 19 575
dQx/d2Jy 294 209 -2207
dQy/d2Jy 100 100 2126

Table 2: Amplitude detuning in the IOTA ring for different sources.

Additionally, for comparison, the amplitude detuning for an ideal lattice without sextu-
poles and the nonlinear insert powered to t = 0.29 is presented here too. Notably, the effect
of the b3 errors is most pronounced in the direct horizontal detuning, showing a decrease of
almost a factor 10 from the unperturbed case. Similarly so, based on the model, the power-
ing of the chromaticity sextupole generates up to 20% of the amplitude detuning generated
by the NL-magnet, in particular for the direct term in the horizontal plane, and to a lesser
extent in the cross-plane detuning. In simulations, the amplitude detuning generated by
the chromaticity sextupoles decreases the horizontal direct term by 25% when changing to a
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working point with split tunes such as Qx = 5.28, Qy = 5.31, with the other terms changing
by less than 5%.

For the measurements of the detuning in the bare lattice, the beam was excited in both
planes. The strength in one plane is stepwise increased while the kick strength in the opposite
plane remains the same throughout the measurement. This was done as to provide enough
excitation in the non-ramped plane to determine the tune in this plane, such that the cross-
plane detuning may also be determined. Given the small and constant excitation strength
in the cross-plane, any change of the tune here is then fully attributed to the excitation of
the plane where the excitation strength is ramped up. In turn, a potential contribution due
to linear coupling is hereby neglected in this approach.

As noted in the previous section, the kick action 2J is then inferred for plane where
the kick strength has been gradually ramped up. Again, in order not to distort the action
calculation, for the analysed data sets, the turn-by-turn data of IBPMA1C has been dropped.

Measurements were conducted using an optics with a working point of Qx = 5.28,
Qy = 5.31. Sextupoles were set such that the chromaticity is matched to 0. The meas-
ured amplitude detuning is presented in Fig. 11.
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Figure 11: Measured amplitude detuning using an optics with a working point of Qx = 5.28,
Qy = 5.31. A linear fit over the presented data is displayed in red, together with the
amplitude detuning obtained from the fit.

It has to be noted that only a smaller number of kicks was available at this working point,
in particular for the horizontal kicks. Furthermore, no online continuous tune measurements
system is present, such that data could not be corrected for any possible tune drift. Notably,
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the measured detuning does not agree with the previously presented expected detuning from
the two models. The summary of the measurement and a comparison to the model values
for the working point Qx = 5.28, Qy = 5.31 is given in Tab. 3.

Sources chromaticity
sextupoles

chromaticity sextupoles +
dipole b3 errors

Measurement

dQx/d2Jx 112 10 412 ± 75
dQx/d2Jy 287 202 -241 ± 38
dQy/d2Jx 287 202 -310 ± 8
dQy/d2Jy 95 96 303 ± 9

Table 3: Measured amplitude detuning in the IOTA ring together with a comparison to the
detuning expected from the model.

Although measurements with horizontal kicks are sparse, the horizontal detuning is about
a factor 4 larger than what is expected and is about the size as the direct horizontal detuning
from the NL-magnet at t = 0.29. Furthermore, the cross term detuning in both cases
shows an opposite sign of what is expected from the model and approximately the same
order of magnitude, hinting at possible extra sources of detuning in the bare lattice. While
inconsistent with behaviour expected if sextupoles are the main contributors to the detuning,
the measured detuning is more consistent with an octupole as main source. From these
measurements however, the number and strength of octupole sources cannot be concluded.
One potential candidate could be hysteresis effects in the octupole string. It should be
noted that before these measurements were conducted, the center octupole was degaussed
and another one was disconnected due to issues with the powering.

Further amplitude detuning analysis was performed for data obtained from a later shift,
using an optics with the same working point of Qx = 5.28, Qy = 5.31. As this data was
primarily taken for (C-)RDT analysis, kick amplitudes were not optimized for amplitude
detuning analysis and the kick strength in the non-ramped plane was unnecessarily high.
Due to this, a non negligible contribution from the kick action of the off plane may arise,
potentially spoiling the measurement accuracy. Additionally, a non-nominal sextupole con-
figuration was used, with only two sextupole from the same straight section used to correct
for chromaticity. In Fig. 12, the results of the amplitude detuning analysis are shown, with
a comparison to the expected model detuning presented in Tab. 4.

Sources chromaticity
sextupoles

chromaticity sextupoles +
dipole b3 errors

Measurement

dQx/d2Jx 150 45 121 ± 26
dQx/d2Jy 302 209 244 ± 11
dQy/d2Jx 302 209 210 ± 22
dQy/d2Jy 225 199 59 ± 10

Table 4: Measured amplitude detuning at a working point of Qx = 5.28, Qy = 5.31 and using
only sextupoles from the left hand straight section for chromaticity correction, together with
a comparison to the detuning expected from the model.
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Figure 12: Measured amplitude detuning using an optics with a working point of Qx = 5.28,
Qy = 5.31 and using only sextupoles from the left hand straight section for chromaticity cor-
rection. A linear fit over the presented data is displayed in red, together with the amplitude
detuning obtained from the fit.

Compared to the previous analysis, a better agreement with the model values is observed
in this case. In particular, no opposite sign in the cross detuning is found, thus it is assumed
that sextupole are the main contributor to the detuning in this scenario and no strong
spurious octupole source appears to be present during that shift. These results also add to
the previous suspicion that the previously observed strong octupole contribution might be
linked to the intervention performed before the measurements. While this measurements
only provide a snapshot over a short time span, based on these results, no persistent strong
spurious octupole source appears present and, bar any hardware issues, amplitude detuning
seems mostly by the chromaticity sextupoles.

4.3 (Combined-) Resonance Driving terms

As motivated in Sec. 2, good knowledge of the nonlinear elements outside of the nonlinear
channel is of great importance for assessing the performance of NL-magnet. Using a nonlinear
model, validated by the measurements, allows for more realistic simulation to estimate the
performance. In the following, also potential correction strategies may be tried in simulation
and, provided a viable solution is found, then be implemented in the accelerator.

For assessing the validity of the IOTA model, as a first measure the so-called combined
resonance driving terms [11] were assessed. In this method, the spectral line amplitude for

17



certain resonances is used to infer a linear combination of two resonance driving terms. As
such, the strength of individual RDTs cannot be inferred from the measurements. Further-
more, this method relies on the use of dual plane BPMs, which is the case in IOTA.

The C-RDT are measured by determining the kick action and amplitude of a specific
spectral line at each BPM. The C-RDT is then obtained by performing a linear fit for
various measurements with different kick action and line amplitudes using the relations for
the individual C-RDT as presented in [11] and as is illustrated in Fig. 13. It has to be noted
that for the analysis here, spectral lines were normalised with the main line of the respective
plane to account for first order calibration errors. As such, during the fitting process, an
additional contribution from the kick action has to be taken into account.
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Figure 13: Amplitude of the V(1,-1) line for different kicks at 2 BPMs. Overlayed a linear
fit to obtain the CRDT at the given BPMs.

Note that in the following, a different notation compared to the original paper [11] will
be adapted, namely, C-RDT will be addressed by their corresponding line. As example,
the C-RDT FNS3 will be addressed by H(−2, 0), corresponding to the line −2Qx in the
horizontal spectrum.

First C-RDT measurements were performed at a working point of Qx = 5.28, Qy =
5.31 and using a nominal sextupole configuration. C-RDTs were only investigated for lines
which were clearly above the noise level in all BPMs, which limit the analysis to coupling,
sextupoles, skew sextupoles, and octupole C-RDTs. In Fig. 14, the measured coupling C-
RDTs are presented. A notable excursion is observed in the injection straight for the C-RDT
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H(0, 1). Following the derivations presented in [23, 24], this indicates a strong influence of
the horizontal motion on the vertical one here. This may be of concern as both the horizontal
and vertical kicker are located here.
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Figure 14: Measured coupling C-RDTs at a working point of Qx = 5.28, Qy = 5.31 and
using a nominal sextupole configuration.

In Fig. 15, the amplitude of the sextupole C-RDTs are presented.
Here, the C-RDT corresponding to the line H(−2, 0) is not presented, as the line was

not observed in the spectra. Additionally, the model sextupole C-RDTs, evaluated using
MAD-X PTC, are included for the case of the nominal chromaticity correction and when
including a sextupole component in the 60◦ dipoles. Notably, a discrepancy between the
model amplitude and measured amplitude is observed in all cases. However, it has to be
noted that the different decoherence factor for the spectral lines [5] have not been applied yet
to the data. The difficulty in determining those lies in that here both planes need to be taken
into account, for which case no analytical solution has been found. As such, decoherence
factors need to be obtained via numerical integration, which for the time being has not yet
been performed. However, a good qualitative agreement in the longitudinal evolution of the
C-RDTs is observed. Given the small expected change from a potential sextupole component
in the dipoles and the discrepancy in the amplitude, no conclusion on the presence of such
errors can be made at the moment.

One skew sextupole line was consistently observed in all BPMs and for different kicks
and the corresponding C-RDT is presented in Fig. 16.

Notably, given that by design no skew sextupole sources are present in the IOTA-ring,
the presence of such line can be explained either by sextupole tilts, by an interplay between
linear coupling and the regular sextupole sources, or any combination of those two effects.
Similar to the sextupole lines, no decoherence factors were applied so far and thus the data
cannot be used yet to determine the origin.

Lastly, in Fig. 17, the C-RDT corresponding to the line H(−1, 2), observed in all BPMs
is presented.
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Figure 15: Measured sextupole C-RDTs at a working point of Qx = 5.28, Qy = 5.31 and
using a nominal sextupole configuration, together with a comparison to the expected model
values.

As octupole lines may also arise from, amongst others, a second order contribution from
normal sextupoles, model values have been included here. Again, due to the lack of the
decoherence correction, no comparison on the amplitude between model and measurement
can be made. However, a difference in the evolution of the C-RDT amplitude is observed,
unlike in the previous case for the sextupoles. Further investigation may thus investigate if
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Figure 16: Measured skew sextupole C-RDT at a working point of Qx = 5.28, Qy = 5.31
and using a nominal sextupole configuration.

a spurious octupole source may explain this difference. Notably, this data was taken during
a different shift than the amplitude detuning data, as such hinting at a potential consistent
octupole source.

In a further shift, studies were performed using a different sextupole powering scheme
to potentially better identify any sextupole component in the 60◦ dipoles. In particular,
the sextupoles in the straight section on the right hand side of IOTA-ring, as illustrated in
Fig. 3, were turned off and the chromaticity in the ring was corrected using the remaining
two sextupoles. Measurements were conducted at a working point of Qx = 5.28, Qy = 5.31,
to compare to the measurements conducted in a previous shift, and at working point of
Qx = 5.32, Qy = 5.29 and Qx = 5.325, Qy = 5.29. These different working points were
chosen due to their proximity to 3Qx resonance and thus increased C-RDTs linked to this
resonance.

In Fig. 18-21, C-RDTs for coupling, sextupole, skew sextupole, and octupole sources are
presented.

For the coupling C-RDT H(0, 1), a similar excursion in the injection straight is observed
as in the previous dataset, although gathered on different days and shifts. Similar so, a
bump in the C-RDT V (1, 0) is observed around IBPMC2R.

For the sextupole C-RDTs, similar conclusions as for the previous results hold. While
again a good quantitative agreement in the evolution is observed, for a comparison between
the model values and the measurements, the difference due to decoherence factors needs to be
taken into account. The C-RDT corresponding to the skew sextupole line V (0,−2) does show
some consistent behaviour between the two shifts, bar the excursion observed at IBPMB2L for
the nominal sextupole configuration. Given the similar behaviour of the coupling C-RDTs
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between the two shifts, no further conclusion on the origin can be made. For the octupole
C-RDT, while the amplitude of the C-RDT remains the same between the measurements,
the evolution of the C-RDT is different between the two measurements. Given that hardware
interventions on the octupole string took place in between the measurements shifts, future
studies using the data corrected for the decoherence may thus look into potential effects
of these interventions on the origin of the octupole line and linking it to specific measures
taken.

Lastly, C-RDTs for measurements at the working point of Qx = 5.32, Qy = 5.29 are
presented in Figs. 22-24. Results have been compared to the results at Qx = 5.325, Qy =
5.29, with no particular difference observed.

Notably, a slight change in the structure pf the coupling C-RDTs is observed between the
measurements for the working point of Qx = 5.28, Qy = 5.31 and at Qx = 5.32, Qy = 5.29.
In particular, the change of the C-RDTs in the CR-straight section is noticeable, which
could stem from a tilt of the quadrupoles used to achieve the tune change. In both cases
a tune split of ∆Q = 0.03 is used, and thus no significant change of the C-RDT amplitude
is expected nor observed. Additionally, in this data sets no skew sextupole line is observed,
which may be partly explained by Qy further away from the 3Qy resonance. For sextupole
C-RDTs, a similar good qualitative agreement is observed between model and measurement
as for the previous measurements. Although taken back to back, a change in the octupole C-
RDT H(−1, 2) is observed for the measurements at Qx = 5.28, Qy = 5.31 and at Qx = 5.32,
Qy = 5.29, where in both cases only the sextupoles in the left hand straight section were
powered. This change might then be explained by the change of the optics due to the tune
knob, under assumption that the strength of any potential spurious octupole source has not
changed between these measurements.

No analysis of resonance driving terms has been performed up until this point, as similarly
to the C-RDT analysis, data has to be corrected for the decoherence first.

5 Conclusions

Assessment of nonlinear magnetic fields, present either by design or by erroneous intro-
duction, is one key task during the design and operation for many accelerators due to
their potential performance limiting effects. One accelerator concept where this may be
off particular importance is the recently proposed nonlinear integrable optics. It is based
on introducing a nonlinear magnet with a particular potential which together with a special
accelerator layout allows to generate an amplitude dependent tune shift, while not exciting
any resonances. Other nonlinear fields in the accelerator may violate the required conditions
and careful assessment is required to account for particle losses due to such sources. In
this note, first studies on nonlinearities outside of the specific nonlinear channel have been
presented for the case of the IOTA accelerator at Fermilab, one of the first machines built
around the concept of nonlinear integrable optics. Using turn-by-turn data from the beam
position monitors, acquired after an excitation with the kicker magnets, first a look in the
linear optics is presented. Linear optics is in general well controlled in the IOTA accelerator,
with a peak β-beating under 10 %. Following studies have looked into the amplitude de-
tuning from the bare lattice without either the NL-magnet nor the octupole channel turned
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on. While initial measurements show discrepancies with the values expected from simula-
tions, attributed to a spurious octupole source, measurements from a later shift show better
agreement with the model values. The discrepancy is assumed to stem from hardware modi-
fication conducted before the first measurements, and no persistent spurious octupole source
appears present in the IOTA-ring. Lastly, measurements of the combined resonance driving
terms (C-RDT) have been presented for different working points and sextupole configura-
tions. Good qualitative agreement for the sextupole C-RDTs has been observed between
the model and measurements for the different configurations. Further studies are looking
into the role of the decoherence of the specific spectral lines to account for the difference in
amplitude between the model and measurements, to allow for a better comparison between
those and in view of a potential use to assess the location and strength of the nonlinear
magnetic fields.
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Figure 17: Measured octupole C-RDT at a working point of Qx = 5.28, Qy = 5.31 and
using a nominal sextupole configuration, together with a comparison to the expected model
values.
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Figure 18: Measured coupling C-RDTs at a working point of Qx = 5.28, Qy = 5.31 and
using only sextupoles in the left hand straight section for chromaticity correction.
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Figure 19: Measured sextupole C-RDTs at a working point of Qx = 5.28, Qy = 5.31 and
using only sextupoles in the left hand straight section for chromaticity correction, together
with a comparison to the expected model values.
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Figure 20: Measured skew sextupole C-RDT at a working point of Qx = 5.28, Qy = 5.31
and using only sextupoles in the left hand straight section for chromaticity correction.
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Figure 21: Measured octupole C-RDT at a working point of Qx = 5.28, Qy = 5.31 and
using only sextupoles in the left hand straight section for chromaticity correction, together
with a comparison to the expected model values.
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Figure 22: Measured coupling C-RDTs at a working point of Qx = 5.32, Qy = 5.29 and
using only sextupoles in the left hand straight section for chromaticity correction.
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Figure 23: Measured sextupole C-RDTs at a working point of Qx = 5.32, Qy = 5.29 and
using only sextupoles in the left hand straight section for chromaticity correction, together
with a comparison to the expected model values.
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Figure 24: Measured octupole C-RDT at a working point of Qx = 5.32, Qy = 5.29 and
using only sextupoles in the left hand straight section for chromaticity correction, together
with a comparison to the expected model values.
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